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Abstract This paper proposes an econometric framework

for joint estimation of technology and technology choice/

adoption decision. The procedure takes into account the end-

ogeneity of technology choice, which is likely to depend on

inefficiency. Similarly, output from each technology depends

on inefficiency. The effect of the dual role of inefficiency is

estimated using a single-step maximum likelihood method.

The proposed model is applied to a sample of conventional and

organic dairy farms in Finland. The main findings are: the

conventional technology is more productive, ceteris paribus;

organic farms are, on average, less efficient technically than

conventional farms; both efficiency and subsidy are found to

be driving forces behind adoption of organic technology.

Keywords Production function � Inefficiency �
Endogeneity � Maximum likelihood

JEL Classifications C23 � D24 � D83 � O30 � Q12

1 Introduction

Productivity differential between alternative production

systems such as organic and conventional farming has

raised debates in the literature. In principal, this differential

can arise either from technological differences (meaning

that the conventional or organic (frontier) production

technology can produce the same output with fewer inputs

or lower cost) or differences in technical efficiency or both.

Organic production is largely based on more restricted use

of specific inputs than conventional production, which

tends to increase production costs. If organic farms are less

productive their profitability will be lower unless the output

price differential is high enough to compensate for lower

productivity. If not, organic farming is not able to attract

new entrants or to keep current farmers in the business.

In order to promote organic farming, the Finnish gov-

ernment has offered some subsidies for switching from

conventional to organic farming. Since subsidies are often

justified on the ground of productivity differential, it is

necessary to examine the sources of the possible produc-

tivity differences, i.e., how much of it comes from

technological differences and how much is from technical

inefficiency. One might argue that even if the organic

production technology is inferior and the productivity dif-

ferential (controlling for expenses in inputs) is not

compensated by higher prices of marketable organic

products, organic production is still worth promoting

because of its positive non-marketable effects.1 Techni-

cally efficient organic farmers should be compensated, if
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1 It is worth noting that organic farming might have other effects

(positive or negative) for example, on the environment, which are not

taken into account due to lack of reliable farm level data. Nielsen and

Kristensen (2005) conclude that N and P surpluses are larger on

conventional dairy farms in Denmark. Grönroos et al. (2006) have

suggested that the use of non-renewable energy is higher per unit

produced on conventional farms. Hole et al. (2005) also suggest that

biodiversity is larger in organic farming systems than in conventional

ones. Thus, we are able to clarify the question only with respect to

traditional inputs and outputs.
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the productivity differential is due to technology. Subsidies

should be designed in a way that does not promote ineffi-

ciency.2 Using Finnish data Pietola and Oude Lansink

(2001) have suggested that policies promoting organic

farming may have suffered from adverse selection prob-

lems because subsidies associated with organic farming

might have attracted less productive conventional farmers

to organic farming. Tzouvelekas et al. (2001) argued that

the use of subsidies might lead to increased technical

inefficiency, especially if subsidies attract farmers who are

more interested in additional support than developing

efficient organic farming practices.

Several other studies have suggested that organic dairy

farms are less efficient technically compared to conven-

tional farms (Oude Lansink et al. 2002; Ricci Maccarini

and Zanoli 2004). Since inefficiency is an important factor

behind low productivity, one might wonder whether less

efficient farmers are indeed more likely to participate in

organic farming. Thus, in the evaluation of various tech-

nologies it is necessary to recognize that technology choice

might be endogenous with respect to inefficiency. Ignoring

this choice problem is likely to introduce bias in the

parameters of the production technologies. Consequently,

the estimates of inefficiency are likely to be inappropriate.

Furthermore, if inefficiency affects the adoption decision,

one cannot use standard binary choice models (probit,

logit, etc.) to estimate the choice probabilities without first

estimating inefficiency.

To address the afore-mentioned issues we consider a

model that recognizes endogeneity of the technology

choice problem, and apply it to the Finnish dairy farm data.

We allow production technology of organic and conven-

tional farms to be different.3 Since inefficiency is likely to

appear in both the production and adoption/choice func-

tions, the standard selectivity correction that takes into

account endogeneity of technology choice does not work.

Consequently, we use a system approach to estimate the

production technologies and the choice equation simulta-

neously. The system approach in which full information

maximum likelihood method is used solves both the

problems.

Empirical results from the Finnish dairy farms show that

subsidy is positively related to adoption, thereby meaning

that subsidies might have attracted farms to organic pro-

duction, ceteris paribus. On the other hand, inefficiency is

found to decrease the probability of adopting organic

farming. Thus, we cannot find support for the adverse

selection problem with respect to technical inefficiency.

However, we find that, on average, organic farmers could

have produced 5.3% more had they used the conventional

technology, ceteris paribus. Similarly, on average, organic

farms are found to be about 5% less efficient than con-

ventional farms. Because subsidy is attracting efficient

farmers, one might hope that in the long run subsidy will be

necessary only if productivity shortfall of organic farms is

not compensated by the price premium they receive.

The rest of the paper is structured as follows. In Sect. 2

we introduce the econometric model. First, we consider the

two-step procedure and explain why this strategy does not

work for the problem at hand. We then develop the single

step procedure to estimate technical efficiency and tech-

nology choice jointly. Section 3 describes the data of

Finnish dairy farms. Empirical results are presented in

Sect. 4. The last section summarizes the main findings.

2 Econometric model

Here we assume availability of panel data4 where the i

subscript refers to each farm and t is the time trend vari-

able. The production function for organic farming is

assumed to be different from that of conventional farming.

These production functions in log form are

yit ¼ fIit
ðxit; bÞ þ vit � uit; ð1Þ

where y is output (scalar) and x is a vector of inputs. The

parameter vector is b, the inefficiency term is uit C 0 and

the noise term is vit. The production technologies f(�) are

assumed to be log-linear (although they can easily be

generalized to accommodate nonlinear functions). They as

well as the uit and vit terms depend on Iit which is the

observed binary indicator variable defined as

Iit ¼
0; for conventional farming, I�it � 0

1; for organic farming, I�it � 0;

�

2 To capture differences in input and output prices the comparison

should be based on profitability.
3 Most of the technical efficiency comparisons between organic and

conventional farms are based on traditional inputs (labor, land,

materials) and outputs (milk, grain etc.) in which the technology is

assumed to be the same (e.g., Tzouvelekas et al. 2001). Although

most of the machinery can be used in both technologies the ban of

applying synthetic fertilizers and plant protection in organic farming

suggest that the organic farmer has to learn new production practices

and has to take a somewhat long-term perspective. In addition,

changes are required when it comes to animal production, animal

welfare, feeding and treatment of sick animals. Organic farmers are

required to have larger space per animal in the cowshed, restrictions

in the percentage of purchased (especially conventional) feeding

stuffs and the use of medicines. In view of these, we assume that

organic and conventional production technologies are different.

4 It is worth noting here that the model developed in this section

works with cross-sectional data as well. Since panel data is used in the

application, we decided to write down the model in terms of panel

data.
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where

I�it ¼ z0itcþ duit � eit: ð2Þ

That is, the ‘‘inclination’’ towards organic farming

(measured via the latent indicator function I*) is

determined by a vector of covariates (zit) and technical

inefficiency (uit). The error term in the indicator function is

eit. Note that the inefficiency and noise terms (uit and vit)

are random. These random terms are assumed to be from

the same family of distributions for both the conventional

and organic farms.

In particular, we assume that vitjIit � iid Nð0; r2
v;Iit
Þ;

uitjIit � iid Nð0; r2
u;Iit
Þ; eit � iid Nð0; 1Þ and are all indepen-

dent given xit and zit. With these assumptions, the

probability of choosing conventional farming is given by

PðIit ¼ 1juitÞ ¼ PðI�it � 0juitÞ ¼ Uðz0itcþ duitÞ; where U
denotes the standard normal cumulative distribution func-

tion (cdf).5 In this form the model is equivalent to a

mixture model, where the mixing probability is a function

of the covariates zit, technical inefficiency uit, and the

previous period’s choice Ii,t-1. Furthermore, since we are

dealing with organic and conventional farming the number

of technologies is known a priori.6

The presence of technical inefficiency (an unobserved

latent variable) is what distinguishes this model from

standard mixture models. If the adoption decision does not

depend on technical inefficiency, then the model for Iit is a

standard binary choice model for panel data. In such a case

one needs to correct for the selectivity problem (that arises

due to non-random adoption) in estimating the production

technologies. However, the present model is much richer in

the sense that we take both endogeneity of the technology

choice and the simultaneity problem by estimating both Iit

and the two production functions jointly. A model that

combines production frontiers with binary dependent

variables (where technical inefficiency plays a non-trivial

role) is not common in the literature.7 It should be noted

here that technical inefficiency measures cannot be

obtained from the production function alone but must

exploit the equation that determines choice of technology

(organic versus inorganic farming). This is because the

technology choice is endogenous. Consequently, exploiting

the choice equation could prove crucial for obtaining

meaningful and more precise estimates. This is the main

innovation of the paper.

The model can be extended to allow past decision to

play a role in the present technology choice decision. For

this we specify the latent inclination function as

I�it ¼ z0itcþ uIi;t�1 þ duit � eit: ð3Þ

Thus, past experience in organic farming increases

(decreases) the probability of being engaged in organic

farming if u is positive (negative), ceteris paribus. Under

the normality assumption5 on eit the model for Iit is a

dynamic probit model for panel data, conditional on the

technical inefficiency term uit. Note that uit plays a dual

role. It affects output via (1) and the technology choice

through (2) or (3). Furthermore, uit is technology-specific.

2.1 A two-step procedure

Before discussing the full fledged maximum likelihood

method, we first examine whether there are simpler alter-

natives, namely, a two-step procedure that can give

consistent estimates of the technology. Since the technol-

ogy choice is not random, i.e., E(vit -uit|Iit = 1or 0) is non-

zero (depends on the z variables) even if v and e are

independent, the estimates of the production function

parameters in (1), after assuming a functional form on it,

are likely to be inconsistent (Heckman type selectivity

bias). In such a case, one can perform the Heckman-type

sample selectivity correction (Sipiläinen and Oude Lansink

2005) to correct for endogeneity in the technology choice

decision. However, the choice equation cannot be esti-

mated using probit/logit because of the presence of the

unknown inefficiency term (uit). Thus, the two-step pro-

cedure (estimating the adoption equation first and then

using the inverse Mill’s ratio in the production functions) is

problematic in the present situation.

How about using the above two-step procedure in the

reverse order? Step 1: Estimate the production function in

(1) separately for the organic and conventional farms, and

obtain estimates of technical inefficiency (uit) using the

Jondrow et al. (1982) formula. Step 2: Use the estimated

inefficiency in the choice Eqs. 2 or 3 and estimate it using

the standard binary choice models (probit or logit)

regression. There are two problems associated with this

procedure. First, since the technology choice is endogenous

(not randomly assigned); estimates of the production

function in (1) are likely to be inconsistent (Heckman type

selectivity bias). That is, endogeneity of technology choice

is completely ignored. Consequently, estimated inefficien-

cies based on these inconsistent parameter estimates are

likely to be wrong. Second, although the purpose of this

second stage regression is to analyze determinants of

technology choice, this information is not used in the

5 The normality assumption on eit can be easily relaxed if we specify

that PðIit ¼ 1juitÞ ¼ Fðz0itcþ duitÞ where F is any cdf. We used two

other distributions in the empirical application.
6 Mixture models for production or cost frontiers are considered in

Orea and Kumbhakar (2004) and Tsionas et al. (2006). For stochastic

frontier models in general see Kumbhakar and Lovell (2000) and

Greene (1993, 2001).
7 See Tsionas and Papadogonas (2006) for a model where technical

inefficiency is a determinant of exit.
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estimation of the technology. Thus none of the two-step

procedures work for the model at hand. To make use of

endogeneity of technology choice in the estimation of the

production functions we now move to the single-step

maximum likelihood (ML) method.

2.2 The single-step ML procedure

Our analysis in this section is conditional on xit, zit, and the

parameter vector, h. Our objective here is to derive the

joint distribution of yit and Iit. To do so, we make the

following assumptions:

yitjIit; uit �Nðx0itbIit
� uIit

; r2
v;Iit
Þ;

PðIit ¼ 1juitÞ ¼ Fðz0itcþ duitÞ;
uitjIit �Nþð0; r2

u;Iit
Þ:

The assumption that technical inefficiency depends on

the choice between organic and conventional farming is

critical and requires special care as we show later.

Conditional on the latent inefficiency, the joint

distribution of yit and Iit can be expressed as

pðyit; IitjuitÞ ¼ pðyitjIit; uitÞpðIitjuitÞ ð4Þ

which is expressed as

pðyit; IitjuitÞ ¼ fNðyitjx0itbIit
� uIit

; r2
v;Iit
ÞFðz0itcþ duitÞIit

� 1� Fðz0itcþ duitÞ
� �1�Iit ; ð5Þ

where fN(y|l, r2) denotes the density of normal distribution

for the random variable y, with mean l and variance r2.

The unconditional density of the joint distribution of yit and

Iit is

pðyit; IitÞ ¼
Z1

0

pðyit; IitjuitÞpðuitÞduit; ð6Þ

where p(uit) is the marginal distribution of the latent

technical inefficiency. This integral cannot be computed

in closed form. Furthermore, we have to deal with

another complication because uit and Iit are not inde-

pendent, that is we allow for the possibility that

conventional and organic farming do not have the same

inefficiency distribution. The problem is how to obtain

the marginal distribution of inefficiency to use in con-

nection with (6).

To evaluate (6) we proceed as follows. Let

uit ¼ PðIit ¼ 1Þ ¼
Z1

0

Fðz0itcþ duitÞpðuitÞduit; ð7Þ

which is the marginal probability of organic farming. The

marginal distribution of inefficiency has density

pðuitÞ ¼ fþN ðuitjr2
u;0ÞPðIit ¼ 0Þ þ fþN ðuitjr2

u;1ÞPðIit ¼ 1Þ;

from which we obtain

pðuitÞ ¼ fþN ðuitjr2
u;0Þ þ uit fþN ðuitjr2

u;1Þ � fþN ðujr2
u;0Þ

h i
; ð8Þ

where fþN ðuitjr2
uÞ ¼ pr2

u=2
� ��1=2

exp ð�u2
it=2r2

uÞ; uit � 0; is

the density of the half-normal distribution. Substituting this

in (7) and solving for uit we get

uit ¼
Aitðr2

u;0Þ
1þ Aitðr2

u;0Þ � Aitðr2
u;1Þ

; ð9Þ

where

Aitðr2Þ ¼
Z1

0

Fðz0itcþ duitÞfþN ðuitjr2Þduit: ð10Þ

Given the expression for uit, the marginal distribution of

latent inefficiency can be obtained through (8). In turn, this

must be substituted in (6) to obtain the joint distribution of

observed endogenous variables.

The integral in (10) has to be evaluated twice, for r2 ¼
r2

u;0 and r2 ¼ r2
u;1: This integral is not available in closed

form so it must be evaluated by numerical integration.

Subsequently, once (8) has been evaluated, it must be

substituted in (6) and evaluate the integral numerically.

The final expression becomes

pðyit; IitÞ

¼
Z1

0

fNðyitjx0itbIit
� uit; r

2
v;Iit
ÞFðz0itcþ duitÞIit

� 1� Fðz0itcþ duitÞ
� �1�Iit �

n
fþN ðuitjr2

u;0Þ

þ uit fþN ðuitjr2
u;1Þ � fþN ðuitjr2

u;0Þ
h io

duit;

ð11Þ

where uit is evaluated numerically using (9) and (10).

Since uit does not depend on u this integral can be

evaluated as

pðyit; IitÞ ¼ uit

Z1

0

fNðyitjx0itbIit
� uit; r

2
v;Iit
ÞFðz0itcþ duitÞIit

� 1� Fðz0itcþ duitÞ
� �1�Iit fþN ðuitjr2

u;1Þduit

þ ð1� uitÞ
Z1

0

fNðyitjx0itbIit
� uit; r

2
v;Iit
Þ

� Fðz0itcþ duitÞIit 1� Fðz0itcþ duitÞ
� �1�Iit

� fþN ðuitjr2
u;0Þduit

ð12Þ

If we define
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Jitðr2Þ ¼
Z1

0

fNðx0itbIit
� uit; r

2
v;Iit
ÞFðz0itcþ duitÞIit

� 1� Fðz0itcþ duitÞ
� �1�Iit fþN ðuitjr2Þduit;

ð13Þ

then (12) can be expressed in a simpler form, viz.,

pðyit; IitÞ ¼ uitJitðr2
u;1Þ þ ð1� uitÞJitðr2

u;0Þ; ð14Þ

which shows that the joint distribution is, in fact, a mixture

of distributions. The expression for Jit(r
2) in (13) can

alternatively be expressed as

Jitðr2Þ ¼ 2pr2
v;Iit

� ��1=2

pr2=2
� ��1=2

�
Z1

0

Fðz0itcþ duitÞIit 1� Fðz0itcþ duitÞ
� �1�Iit

� exp �ðuit þ eitÞ2

2r2
v;Iit

� u2
it

2r2

" #
duit; eit ¼ vit � uit

ð15Þ

As we mentioned before, the integral that appears above

has to be evaluated by numerical integration techniques.

Since the integrals involved are univariate, we use the

quadrature method which is more efficient and economical

than the simulated maximum likelihood estimation

procedure.8

2.3 Estimation of inefficiency

Next, we address the issue of inefficiency measurement

given the observed data. In standard stochastic frontier

models technical inefficiency measurement can be per-

formed using the Jondrow, Lovell, Materov and Schmidt

(1982) estimator, viz., E(uit|data, parameters). For this, we

need to derive p(uit|yit, Iit), i.e., the conditional probability

density function uit|data, parameters), viz.,

pðuitjyit; IitÞ ¼
pðuit; yit; IitÞ

pðyit; IitÞ
¼ pðyitjuit; IitÞpðuitjIitÞpðIitÞ

pðyit; IitÞ
;

ð16Þ

which can be rewritten as

pðuitjyit; IitÞ / pðyitjuit; IitÞpðuitjIitÞ
¼ fNðyitjx0itbIit

� uit; r
2
v;Iit
ÞfþN ðuitjr2

u;Iit
Þ: ð17Þ

The normalizing constant of the distribution and its

moments are then obtained using numerical integration.

More, specifically, we use (17) to compute E(uit|yit, Iit),

which is used as a measure of inefficiency.

3 Data

The dairy farm data are collected from the bookkeeping farm

database of MTT Economic Research. The data include

detailed farm level information on production and costs on

various items over the period from 1995 to 2002. Our sample

consists of an unbalanced panel of 279 farms of which 49

farms (17.56%) are organic. The total number of observations

is 1921. During the period of this sample, more than 20% of

sample farms were organic producers for at least 1 year.

In the present analysis, we use one output (which is a

composite measure of milk and other outputs) and five

inputs (labor, land, energy, material and capital). Labor

input is the sum of working hours on the farm (family and

hired labor). The land area covers both own and rented

arable land. Energy, materials (fertilizer, seed and pur-

chased feed) and capital are expressed in monetary values.

Capital input is measured as a sum of machinery and

building capital stock. Since we do not have access to farm

specific prices, we have converted monetary values of

outputs and inputs to implicit quantities by deflating those

using price indices of respective input and output catego-

ries published by Statistics Finland. Thus, quality

differences are reflected in input and output quantities. This

is important because organic farms may receive a price

premium for their products. On the other hand, input prices

for example for certified seeds in organic farming are in

Finland higher than the prices of conventionally produced

seeds. Table 1 presents the descriptive statistics of all

farms and conventional and organic farms separately.

It can be seen from Table 1 that the average farm size in

Finland is small (the average arable land area is slightly

more than 39 ha). The average number of animal units is

approximately 31. Organic farmers cultivate, on average, a

significantly larger land area and possess a larger number

of animals compared to conventional farmers. However,

the average milk output on organic farms is 10% smaller

compared with conventional farms. On the other hand,

organic farms produce a wider array of products indicating

that they are more diversified than conventional farms.

There are no significant differences in the usage of other

inputs except in the arable land area although the capital

input is larger on organic farms. Livestock densities do not

differ significantly either but milk output per hectare is

significantly higher on conventional farms. On the con-

trary, support per hectare is significantly higher on organic

farms. This support measure includes all subsidies except

investment aids. The average age of farmers in our sample

is 44 years. Organic farmers are significantly younger than

conventional farmers.

Usage of inputs and production of outputs have increased

steadily over time. On the input side, the growth has been

the fastest for the capital input, which has almost doubled

8 See Greene (2003) for details on the use of simulated maximum

likelihood procedure in estimating inefficiency using the stochastic

frontier approach.
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during the period. The use of materials has increased by the

same rate as milk output (60%) but the arable land area has

increased less (25%) and use of energy has even decreased

slightly. Labor input has remained at the same level for the

whole sample period in spite of the increase in output.

Changes in input shares suggest a substantial substitution of

capital for labor and energy during this period.

Table 2 shows how the experience in organic farming

(measured in years) has developed during the sample per-

iod. The average experience in years has increased from

four to five and a half years. Experience has been used as a

proxy for managerial experience in several studies (Stefa-

nou and Saxena 1988; Weersink et al. 1990; Bravo-Ureta

and Rieger 1991; Reinhard 1999).

We used organic farming experience as a covariate in

the adoption decision process, viz., whether to continue to

be in organic farming, because the more experienced a

farmer is in organic farming, the more likely that he will

continue. In addition, the data includes the information

about the location of the farm. Because of geographical

differences, the country is divided into seven so called

agricultural support regions. The regions reflect climatic

conditions and differences between southern, central and

northern Finland. When moving from south to north the

growing period becomes shorter. In southern Finland the

effective temperature sum is close to 1,300�C while it is

less than 700 in the north. These climatic differences nat-

urally affect productivity. Even the size of field plots and

their location are less favorable in the northern than

southern parts of the country. Shorter growing and grazing

period also increase the need for larger feed and manure

storages as well as better insulated buildings against severe

cold during the winter. Regional dummy variables have

therefore been used in the models to capture the differences

in physical environment (Kumbhakar et al. 1991; Hallam

and Machado 1996; Reinhard 1999; Tzouvelekas et al.

2001). Physical differences of the regions may also affect

the competitiveness and choices made in relation to the use

of available technologies. Therefore, the same regional

dummy variables are also included in the technology

choice model.

Production intensity is likely to affect the adoption of

technologies. Farmers used to high intensity farming

technique are less likely to shift to organic technology that

is less intensive (such as lower feed output per hectare).

We also used two intensity variables: milk intensity and

animal density are indicators of how specialized a farm is.

These intensity variables are related to production condi-

tions because in less specialized and poor production

conditions these intensity variables are lower. Higher

intensities also usually reflect more intensive use of pur-

chased feeding stuffs. Organic production is largely based

on home grown forage.

Table 1 Descriptive statistics—pooled, conventional and organic farm data for 1995–2002

All farms (N = 1,921) Conventional (N = 1,756) Organic (N = 165)

Mean Stdb Mean Std Mean Std

Output ð€Þ 60,716 29,864 60,983 29,114 57,875 36,897

Input

Labor (h) 5,033 1,485 5046 1,477 4897 1,566

Land (ha)a 39.2 21.5 38.5 19.8 46.9 33.6

Energy ð€Þ 4,671 2625 4,652 2,620 4,868 2,682

Material ð€Þ 32,668 19,606 32,559 18,829 33,827 26,547

Capital ð€Þ 85,174 67,693 84,508 67,274 92,265 71,834

Livestock unitsa 31 16 31 15 35 22

Livestock-intensity 0.87 0.33 0.87 0.33 0.84 0.34

Milk-intensitya 3,903 1,686 3,971 1647 3181 1,917

Support (€/ha)a 515 129 500 120 669 125

Age of farmera 44 9 45 9 43 7.7

a According to t-test, the means of conventional and organic farms differ significantly at least at the 5% level of significance
b Std refers to standard deviation

Table 2 Average experience in organic farming

Year N Mean Std Min Max

1995 18 4.06 2.41 1 8

1996 22 3.27 2.64 1 9

1997 24 3.96 2.66 1 10

1998 21 3.38 2.48 1 11

1999 21 4.85 2.85 1 12

2000 19 5.26 2.75 1 13

2001 19 5.16 2.63 1 11

2002 22 5.55 3.05 1 12
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4 Results

Because of the problems associated with the two-step pro-

cedures mentioned in Sect. 2.1, we are not discussing results

based on these models in details. We find evidence in favor of

two separate technologies based on the standard likelihood

ratio test. The parameters associated with organic and con-

ventional technologies ignoring endogeneity of technology

choice (first-step of the two-step procedure) are reported in

the Appendix (Table A1). The second-stage estimators

(parameters of the adoption equation) are reported in Table

A2 under three different distributions on the noise term (e) in

the adoption Eq. 3, viz., normal, logistic and extreme value.

We used regional dummies in the adoption equation as well

as in the production functions. The coefficients associated

with the regional dummies are not reported in these tables to

save space. Most of the coefficients associated with organic

and conventional technologies as well as the inefficiency

parameters are found to be statistically significant. The time

trend variable is found to be negative (though not significant

for the organic technology), which indicate that both organic

and conventional farms experienced technical regress.

Technical regress for the conventional farms is much higher

(perhaps due to increased regulations over time). Negative

technical change during this relatively short period of time is

likely to be related to the Finnish EU-accession in 1995,

which caused a marked change in prices and subsidies. The

weather conditions in the late 1990s were also very poor.

Technical change is also found to be low in other Finnish

dairy farm studies.

So far as adoption is concerned experience, past adoption,

subsidy provision and animal density are found to increase

the probability of adopting/continuing organic farming.

These results are quite intuitive. The positive and significant

coefficient associated with a subsidy shows that organic

farmers may be lured by subsidies. Inefficiency is, however,

found to decrease the probability of adopting/continuing

organic farming. That is, we do not find any evidence to

support that inefficiency is a driving force behind adoption

of organic farming technology. This finding makes sense.

The efficient farmers can make a profit by switching because

by doing so they are entitled to get an additional subsidy.

Milk intensity is found to decrease the probability of

adopting/continuing organic farming. When milk intensity is

high, it is not possible to produce the feed for cows on their

own fields, which is a prerequisite for organic farming.

Intensive dairy farms are also highly specialized in milk.

Thus, the switch from conventional production is often

handicapped by ‘home grown’ feeding stuff. The coefficient

of animal density is positive. Therefore, dairy farms that are

less specialized in milk production but produce a relatively

wide array of animal products are more likely to adopt

organic farming practices.

The parameter estimates from the single-stage ML

approach are reported in Table A3.9 The signs on the

parameters associated with the organic and conventional

technologies are robust across different models, although

their magnitudes differ. The coefficients associated with

the basic inputs (land, labor, capital, energy and material)

are all positive and most of them are statistically signifi-

cant. The trend variable (for the organic farms) has a

negative coefficient (technical regress), except for the

logistic distribution. However, the coefficient is not sig-

nificant under any distribution. This is, however, not the

case for the conventional farms. We find significant tech-

nical regress under all three distributions. So far as returns

to scale (given by the sum of the input coefficients) is

concerned, we do not find much difference between the

conventional and organic farm technologies (1.036 vs.

1.052). Similar to the two-stage model, experience, past

adoption and animal density are found to increase the

probability of adopting/continuing organic farming. On the

other hand, the opposite is true for inefficiency and milk

intensity.

To examine whether the conventional technology is

better than the organic technology, we compare the pro-

ductivity differential between organic and conventional

farming. Since the technologies use multiple inputs we

compute productivity from that ratio Ŷ=X̂ where Ŷ is the

predicted frontier output and X̂ is a measure of aggregate

input constructed from the estimated coefficients of indi-

vidual inputs as weights (i.e., ln X̂ ¼
P

j âj ln Xj where

Xj = land, labor, capital, energy and material). Differences

in productivity between conventional and organic farms can

then be computed from the log difference in ðŶ=X̂Þ: Note

that this measure is free from noise as well as inefficiency. It

can be seen from Table 3 that, on average, conventional

farms are more productive. The difference also depends on

distributional assumption on the noise term in the adoption

equation. As argued before, these differences can be used to

justify subsidy to the organic farmers.

In the productivity comparison above, we did not con-

trol for input usage. Since input levels used by organic and

conventional farms are different, we can make the com-

parison more meaningful by computing technology gap in

the following manner. First, we compute output levels

Table 3 Productivity differential between conventional and organic

farms

Productivity

differential

Normal

CDF

Logistic

CDF

Extreme value

CDF

Mean 21% 33% 37%

9 The coefficients on the regional dummies are not reported here to

conserve space.
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using the estimates of conventional and organic technolo-

gies (denoted by Ŷc and ŶoÞ and take the maximum value

of Ŷc and Ŷo (i.e., Ŷm ¼ maxfŶc; ŶogÞ at each data point.

Then we compute the difference between Ŷm and Ŷo at

each data point. If the difference is positive and the farm is

using conventional technology, there will be no produc-

tivity gain in switching to organic farming, because the

conventional technology is superior. On the other hand, if

the difference is positive and the farm is using the organic

technology (viz., an organic farmer), the difference can be

viewed as output loss because the organic technology is

inferior (produces less with the same input quantities).

Alternatively, a positive difference means that if an organic

farm decides to use the conventional technology with his

input levels, he should be able to produce more. Unless this

difference is positive for all organic farms we cannot say

that the organic technology is inferior. In such a case, one

could argue that unless the output loss is compensated by a

higher output price the organic farmers cannot compete

with the conventional farmers and will be out of business.

Our result on productivity differential (reported in

Table 4) is sensitive to distributional assumptions on the

error term in the adoption equation. For example, under the

normality assumption we find that for 75% of the organic

farms the technology is inferior. On average, they could

have produced 5.3% more had they used the conventional

technology, ceteris paribus. However, for the remaining

25% of the organic farms there would have been no gain

had they moved to conventional farming. Thus, we cannot

say that the technology is inferior for all organic farms.

Only the extreme value distribution predicts that for 99%

of the organic farms, output is lower because the technol-

ogy they are using is inferior.

Now we examine technical efficiency of organic and

conventional farms under different distributional assump-

tions on the distribution of the error term in the adoption

equation. The results are reported in Table 5 and Figs. 1–3.

It can be seen from Table 5 that (i) on average, organic

farms are about 5% less efficient; and (ii) the mean effi-

ciency is quite robust across different distributional

assumptions. The extreme value distribution suggests

higher relative inefficiency but a smaller difference

between technologies. The density plot of the efficiency

Table 4 Productivity differential from switching

Productivity differential Normal CDF Logistic CDF Extreme value CDF

Conventional technology

is better ) Ŷc � Ŷo [ 0

Mean (Median) 5.32% (4.24%) 7.73% (6.42%) 12.9% (12.12%)

Percent of farms (organic) 75% 77% 99%

Table 5 Technical efficiency

(single-stage ML) under

different CDFs

Normal CDF Logistic CDF Extreme value CDF

All Organic Conventional All Organic Conventional All Organic Conventional

Mean 0.854 0.796 0.859 0.853 0.798 0.858 0.759 0.744 0.761

Median 0.870 0.802 0.873 0.870 0.806 0.874 0.766 0.746 0.768

Std. dev 0.066 0.062 0.064 0.069 0.064 0.067 0.047 0.048 0.046

Min 0.374 0.587 0.374 0.374 0.584 0.374 0.396 0.595 0.396

Max 0.947 0.906 0.947 0.948 0.908 0.948 0.851 0.846 0.851

Fig. 1 Densities of technical efficiency –normal model

Fig. 2 Densities of technical efficiency –logistic model
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scores (Figs. 1–3) show that efficiency distributions are

more concentrated for the conventional farms.

5 Discussion and conclusions

In recent years demand for organic products has increased

tremendously due to consumers concern of health and

safety of food products. In spite of this the percentage share

of organic products in Europe as well as in the US has

remained relatively small. Is it because productivity in

organic farming is considerably lower than that of con-

ventional farms? Are organic farms technically less

efficient compared to the conventional farms? Is it subsidy

that drives farmers in organic production? These questions

are addressed in the present paper using dairy data from

Finland. Following are the distinguishing features of the

present study: (i) technologies of organic and conventional

farms are allowed to be different, (ii) technology choice is

endogenous, (iii) production efficiency (along with other

exogenous covariates) affects technology choice decision.

Since efficiency affects output as well as technology

choice, we developed an econometric framework to esti-

mate production technologies and technology choice/

adoption decision simultaneously. Maximum likelihood

method is used to estimate parameters of production

technologies, which are then used to estimate efficiency of

each organic and conventional farm. By doing so we could

decompose productivity differentials into technology and

efficiency components.

For example, under the normality assumption we find

that for 75% of the organic farms the technology is inferior.

On average, organic farmers could have produced 5.3%

more had they used the conventional technology, ceteris

paribus. Similarly, on average, organic farms are found to

be about 5% less efficient. However, not all organic farms

are inefficient. Finally, efficiency and subsidy are found to

be driving forces behind adoption of organic technology

(except for the logistic specification). Because subsidy is

attracting efficient farms, one might hope that in the long

run organic farms will be as efficient as the conventional

ones. If so, in the long run subsidy will be necessary only if

productivity shortfall of organic farms (pure technological

not inefficiency) is not compensated by the price premium

they receive.

Appendix

Fig. 3 Densities of technical efficiency –extreme value model

Table A2 Parameter estimates (second-stage adoption model)

Parameters Normal CDF Logistic CDF Extreme value CDF

Estimates Std. err. T-value Estimates Std. err. T-value Estimates Std. err. T-value

Constant -2.5428 0.3676 -6.917 -4.4208 0.8027 -5.508 -1.8931 0.2433 -7.781

Experience 2.9490 0.3644 8.092 1.3929 1.4840 0.939 1.2161 0.4546 2.675

Milk intensity -0.2722 0.1033 -2.635 -0.6039 0.2162 -2.794 -0.1832 0.0690 -2.657

Animal intensity 1.3478 0.6663 2.023 2.5959 1.5765 1.647 0.9542 0.4560 2.092

Lag adoption 1.3243 0.4313 3.071 5.4372 2.0936 2.597 3.5488 0.6695 5.301

Subsidy 0.4184 0.0728 5.747 0.8319 0.1424 5.841 0.3337 0.0604 5.523

Inefficiency -1.1770 0.6589 -1.786 -2.8626 1.3220 -2.165 -0.7354 0.4040 -1.821

Table A1 Parameter estimates (first-stage stochastic frontier model)

Parameters Organic technology Conventional technology

Estimates Std.

err.

T-

value

Estimates Std.

err.

T-

value

Constant 2.2181 0.9256 2.397 2.4817 0.2303 10.776

Land 0.1347 0.0577 2.335 0.1211 0.0178 6.817

Labor 0.1806 0.0882 2.047 0.2634 0.0263 10.019

Capital 0.0625 0.0463 1.349 0.1089 0.0102 10.720

Energy 0.1228 0.0670 1.834 0.0108 0.0153 0.708

Material 0.5523 0.0849 6.501 0.5344 0.0168 31.772

Time -0.0132 0.0132 -1.001 -0.0213 0.0027 -7.894

rv 0.2220 0.0357 6.215 0.1223 0.0077 15.897

ru 0.2944 0.0763 3.856 0.3333 0.0262 12.712
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